
COMPUTATION OF LAMINAR FLOW IN MIXED TURBULENT CONVECTION AND 

ITS INFLUENCE ON HEAT TRANSFER 
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The author has derived a total flow energy equation for conditions of turbulent 
mixed convection on a vertical surface. He proposes correlations describing the 
development of laminar flow based on systematic solutions of this equation, and 
has derived a formula for the wall heat transfer. 

INTRODUCTION 

Many experimenters have noted reduced turbulent fluctuations when natural convection has 
been added to forced convection. It is well known that this phenomenon is accompanied by re- 
duced wall heat transfer. Unfortunately, the data on the development of this process is ba- 
sically fragmentary. There are no quantitative evaluations that would predict the develop- 
ment of laminarization. The heat transfer formulas are in most cases empirical and corre- 
late to a specific series of experiments. This paper will attempt to fill the gap. 

Qualitative Analysis and Main Equations. As is known, so-called laminarization of the 
flow results when convection, i.e., the level of turbulent fluctuations falls, and the energy 
of turbulence falls, which in turn causes reduced heat transfer. 

The author proposes the following qualitative explanation of this phenomenon. The addi- 
tion of secondary Archimedes forces to the forced turbulent flow leads to distortion of the 
velocity profile and to the flow being pressed more strongly to the wall, and to a correspond- 
ing increase of friction. The increased friction requires increased energy expenditure, and 
therefore the total flow of kinetic energy, made up of the kinetic energy of the mean flow and 
that of the turbulence, begins to redistribute, increasing the mean flow energy due to a de- 
crease of the turbulence energy. The result is that laminarization begins. At the same time 
the total flow energy increases due to the Archimedes forces. When the gain obtained exceeds 
the loss from the friction increase, the flow again begins to turn turbulent. 

The redistribution of flow energy in this process occurs as follows. Clearly bending of 
the velocity profile leads not only to an increase of the mean flow derivative at the wall, 
but also to reduced velocity in the outer part of the boundary layer. As a result the maximum 
values of the u'o' correlation, fall into a region with lower values of the derivative, which 
leads to reduced generation of turbulent fluctuations, and to a corresponding reduction of 
the turbulent friction. The reduction of the friction forces is equivalent to an increase 
of the kinetic energy of the mean flow. 

To describe this process we can use the total energy flux balance equation in the turbu- 
lent boundary layer, a special case of which Hinze [i] obtained with no Archimedes forces 
and no wall influence. Using the transfer equation for the kinetic energy of turbulence ob- 
tained in [2] the author has derived an analogous balance equation accounting for wall influ- 
ence and the action of buoyance forces on the flow. It takes the following form: 

2 v: o v(r-r )eu+2,1 C C ,  
Us (1) 

" Ok =0+ 2" f (  oV  )' 
o ov o Oy dy. 

The t e r m s  o f  t h i s  e q u a t i o n ,  f rom l e f t  t o  r i g h t ,  a r e :  I )  t h e  v a r i a t i o n  o f  t h e  k i n e t i c  e n e r g y  
o f  t h e  mean f l o w ;  I I )  t h e  v a r i a t i o n  o f  t h e  k i n e t i c  e n e r g y  o f  t u r b u l e n c e ;  I I I )  t h e  e n e r g y  
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Fig. I. Computation of ~TFOd~l as a function 
0 

of Re. 

increase due to Archimedes forces; IV) the energy increase due to temperature fluctuations; 
V) the energy increase due to temperature fluctuations; VI) the turbulence energy dissipation; 
and VII and VIII) the energy decrease due to the wall influence. As was shown by check cal- 
culations, term IV is negligibly small compared with term III, and term VII is neglibibly s 
small compared with term VIII, and therefore the small terms can be dropped without loss of 
accuracy. 

Since the flow laminarization in the mixed convection appears relative to the forced 
case, we must write an analogous equation for the pure forced case. It will differ from 
Eq. (i) only in that terms III and IV are absent. 

To describe the processes occurring when natural convection is added to forced convec- 
tion, we derive an equation for the pure forced case from Eq. (i). Neglecting the small 
terms we can write 

~ k U  ~ 

v; u; 

Here the subscript m denotes "relative to mixed convection," and f denotes "relative to forced 
convection." 

Now the terms describe: I) the variation of the kinetic energy of the mean flow when 
natural convection is added to the forced case; II) the variation of the turbulent energy; 
III) the increase of total flow energy due to Archimedes forces; IV) the variation of the 
energy dissipation of the mean flow; V) the variation of the energy dissipation of the tur- 
bulence; VI) the variation of the energy decrease due to the wall influence. 

To obtain the numerical characteristics of the process, the system of equations describ- 
ing the transfer process with turbulent mixed convection [2] was solved twice, once for forced 
convection, and a second time for mixed convection, but with the same initial conditions and 
small values of Gr* number, so that the flow was in the forced convection region. All the 
calculations were made for 0.72 i Pr ! i0. From the results we determined and analyzed the 
terms of Eq. (2). 

Computed Results and Summary Relations. Before analyzing the computed results we shall 
consider the third term of Eq. (2), counting from left to right. It describes the production 
of total flow energy due to Archimedes forces. If we rewrite Eq. (2) in the similar vari- 

ables of forced convection with qcT = const, then this term acquires the form 2~2Qr*/~e2.SfF@d~ 
0 

where F=U/U~, O=-- (0,5Re)~ ~(T--T~) ~/qwx, ~= (0,SRe) ~ If we now write the flow con- 
tinuity equation in the same variables, multiply it by O~combine it with the energy transfer 
equation, written in the same variables, and integrate the result across the layer from 0 to 
~, then after allowing for the boundary conditions we have the equation 
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where 
eo 

= Re; In ---- .I FOd~l. 
0 

2~ d In - - ~  + 2 In = 1/Pr, 

This equation has the analytical solution 

I n - - 0 ' 5  ( 1 - -  C )  " p r  (3) 

From the computed results it was found that C = Re0/Pr ~ where Re 0 depends on the starting 
point of the computation. Figure 1 shows the results of reducing the flow computations. Eval- 
uated for Reinit = 4.75"104 , Pr = 0.72. 

Generalizing what has been written above, we can write 

Y  e~ GEN = U~ ~g U (T - -  Te) dy = --2,83 Re 2,~ Pr pr o, l Re . (4) 

To explain the physical meaning of the constant Re 0 we examine Eq. (3) in more detail. 
First, the value of In does not depend on Gr*. Hence it follows that by adding the natural 
flow to the forced flow the mutual variations of profiles of velocity and temperature are 
compensated for in such a way that In remains constant for a given value of Re. 

Further, as test computations have shown, in the case of laminar forced flow In = 0.5/Pr 
i.e., C----O. This same conclusion can be derived from the similarity solution of the laminar 
forced convection problem with qcT = const in these variables. 

As was noted above, for the turbulent flow regime C = Re0/Pr ~ where Re 0 ~ 0. Then, 
from the fact that In must be a continuous function of Re it follows that C must vary with 
the development of the process. In the author's opinion, C = C[(u'/Ue)max] , i.e., C = 0 for 
laminar flow, increases at the time of transition, and stabilizes in developed turbulence. 
Hence it, follows that C, and this means also Re0, characterize the point of transition to de- 
veloped turbulence. 

We can write Eq. (2) in the form 

II = III-- ( I+ IV+V+VI) .  

[Here we have replaced the terms by their ordinal number in Eq. (2)]. On the left is the 
variation of the turbulence energy, and on the right there is an increase of the total energy 
minus the decrease of total flow energy. Or we have 

I I = I I I ( 1  I-t- I V + V + V I  ) 
III " ( 5 )  

The expression (I + IV + V + VI)/III describes the ratio of the dissipative terms to 
the production terms. 
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Figure 2 shows the results of 25 computations of the boundary layer with different values 
of Pr and Gr*/Re ~. These results are well correlated by the relation 

Gr* )-0,0552 
GENDISS -- 1, 5pr~176 l~e2,O 8 �9 (6) 

Figure 2 shows the computed point DISS/GEN'Pr -~176 Combining Eqs. (4)-(6) we have a 
correlation describing the decrease of turbulent energy, which means also laminarization of 
the flow when adding the natural convection to the forced convection: 

[( d x o  ~ m-- dy = 2 , 8 3 - -  
Gr* 0,5 ( 

Re 2'5 Pr 
Reo ) ( l_ l ,5PrO,Os(  Gr* \-0,0552) 

prO-~Tke ' Re2,O~ ) .(7) 

It is known that the ratio Nu/Nuf, when adding natural convection to forced convection, 
decreases due to laminarization of the flow. Therefore, postulating changes of Nu/Nuf and 
Ak in proportion, we consider the ratio d(Nu/Nuf)/dx/Ak. 

Figure 3 shows results of reducing the computed data. They are described satisfactorily 
by the correlation 

Combining Eqs. 

d (Nu/Nuf) /kk = 1,07.10~ -2' 1. 
dx I 

(7) and (8), we have the formula 

( 8 )  

1 .100 ~ )C <Or*l 
dx -- Pr Re4, 6 1 pr~, i-Re X 1 -- 1,5Pr ~176 Re2,O8 �9 ( 9 )  

We integrate this relation, putting that for Re = Re0/Pr ~ Nu = Nuf. As a result we 
have 

fNu  = 1 +  1OO [ Gr* ( ~  Re 3 A Nu--" ,---'---C- 3,29 -]- 2,2 
Re - -  5,49 \ -~e]  7 

Re3,~9 6,71 -b 2,8 Re -- 9,51 \ ~ e  J ] J ' 

where A = Re0/Pr ~ 

Regarding its structure, this Eq. (i0) has a transition to the formula for forced flow 
and describes a region of laminarized convection. It is valid, according to the test calcu- 
lations, in the region Nu/Nuf i 1.5 or Gr*/Re 2"5 < 50. To obtain the transition to formulas 
for heat transfer in natural convection we recommend the following expression: 
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TABLE i. Comparison of Computations with the Experimental 
Data of [3] (Pr = 0.72, Re 0 = 6"104 ) 

I t i o n ,  •  , t i o n ,  % 

3,05 3,63 
3,45 5,60 
2,10 9,30 
2,69 1,30 
2,48 1,78 
2,84 2,95 
3,22 4,56 
2,11 1,44 
2,28 2,11 
2,45 2,62 
2,62 3,47 
2,96 5,33 
1,47 1,08 

5,33 
5,82 
4,11 
5,11 
4,59 
5,04 
5,52 
3,97 
4,13 
4,35 
4,52 
4,92 
2,87 

5,90 --10,1 
6,19 --5,9 
4,53 --9,3 
4,69 8,9 
5,06 --9,3 
5,49 --8, 2 
5,78 --4,6 
4,04 --1,8 
4,61 --I0,5 
4,56 --4,7 
4,89 --7,5 
5,08 --3,2 
2,66 8,0 

1,59 
1,71 
1,83 
1,60 
1,72 
1,84 
2,08 
1,41 
1,52 
1,62 
1,84 
9,80 

I 
1,46 I 
1,931 
2,37 I 
1,55 I 
2,05 I 
2,52 I 
3,93 I 
1,48 I 
2 ,oo  I 
2,54 ' 
4,10 
1,28 

I 

2,98 2,83 
3,09 2,98 
3,22 2,96 
2,98 2,71 
3,08 2,89 
3,21 2,90 
3,42 3,09 
2,68 2,49 
2,76 2,76 
2,83 2,90 
2,99 3,36 
2,18 2,41 

5,4 
3,6 
8,6 
9,9 
6,6 
10,5 
10,7 
7,5 

--0,2 
--2,4 
--10,9 
--9,7 

TABLE 2. Comparison of the Computations with the 
Experimental Data of [4] (Pr = 5.7, Re0 = 7.5"104 ) 

Re. i0_ ~ Gr,. i0-,4 NUcalc 10-, NUexpl 0-, Deviation, % 

0,73 
1,20 
2,48 
3,22 
1,20 

9,98 
9,89 
9,75 
I0,1 
2,26 

1,66 
1,66 
1,32 
1,72 
0,88 

1,57 
1,47 
1,26 
1,55 
0,91 

5,8 
12,8 
5,0 
11,0 

--3,9 

Nu = ~ Eq. (10), Nu/Nuf~< 1,5, (11)  

~ u f  [Nunat.TNuf, N u / N u f > I , 5 .  

Here N u n a t ( u r a l  ) i s  d e f i n e d  by any f o r m u l a  f o r  comput ing  h e a t  t r a n s f e r  in  n a t u r a l  c o n v e c t i o n .  

Tab l e s  1 and 2 compare Nu/Nuf computed f rom Eq. (11)  w i t h  t h e  e x p e r i m e n t a l  d a t a  o f  [3] 
and [4]  f o r  a i r  and w a t e r .  The Nunat  number was found  from t h e  V l i e t - L a i o  f o r m u l a :  Nunat.  = 
0 .558  (Gr*Pr)  ~  The a g r e e m e n t  i s  s a t i s f a c t o r y .  The Re 0 p a r a m e t e r  was a f r e e  c h o i c e .  In  
t h e  c o m p a r i s o n  w i t h  [3]  i t  i s  l e s s ,  c o r r e s p o n d i n g  t o  t h e  p r e s e n c e  o f  a t u r b u l e n c e  g e n e r a t o r  
in  t h e  e x p e r i m e n t s .  

R e g a r d i n g  d e t e r m i n a t i o n  o f  t h e  v a l u e  o f  Re0 in  t h e  p r a c t i c a l  u se  o f  Eq. (11)  t h e  f o l l o w -  
ing  comment can be made. As check  c o m p u t a t i o n s  have  shown, a v a r i a t i o n  o f  Re0 f rom 5"10 4 t o  
l0 s l e a d s  t o  no more t h a n  a 20% d e v i a t i o n  o f  Nu/Nuf,  computed f rom Eq. ( 1 1 ) ,  f rom t h e  mean 
v a l u e  o f  Nu/Nuf in  t h i s  i n t e r v a l  o f  v a r i a t i o n  o f  Re0, and t h i s  mean v a l u e  c o i n c i d e s  p r a c -  
t i c a l l y  e x a c t l y  w i t h  t h e  v a l u e  o f  Nu/Nuf computed f o r  Re0 = 7"10 4. However,  in  compar ing  t h e  
c o m p u t a t i o n s  w i t h  t h e  r e s u l t s  o f  [ 4 ] ,  o b t a i n e d  w i t h o u t  a t u r b u l e n c e  g e n e r a t o r ,  t h e  Re 0 v a l u e  
o b t a i n e d  was 7 . 5 " 1 0  4 . For  t h e s e  r e a s o n s  f o r  t h e  p r a c t i c a l  u se  o f  Eq. (11)  we can recommend 
Re0 = 7"104 �9 

CONCLUSIONS 

The author has suggested a qualitative explanation of the occurrence of the phenomenon 
of laminarization when a secondary natural convection is added to a forced convection. To 
describe this process we propose the total flow energy balance equation in the turbulent 
mixed convection boundary layer. From analysis of solutions of this equation we propose 
correlations describing the development of laminarization of the outflow, and we have ob- 
tained a formula for heat transfer at the wall. 

NOTATION 

k=O,5 u s u i , turbulence energy; ~, rate of dissipation of turbulence energy; U, mean vel- 
ocity in the longitudinal direction; Ue, incident flow velocity; T, mean temperature; T e, tem- 

perature of the unperturbed flow; 6e= IU/U~(l--( U/Ue)~)dy, energy displacement thickness; Re = 
Uex/V, Reynolds number; Nu = ax/%, Nusselt number; Nuf, Nusselt number for forced flow; Or*= 
g~q.wjXV%~2, modified Grashof number; Pr = v/a, Prandtl number; qcT, heat flux at the wall. 
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